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LETTER TO THE EDITOR 

On essential spectra of hard-core type Schrodinger operators 
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Germany 
CPT, CNRS, Centre de Luminy, F-13288 Marseille, Cedex 9, France, and UniversitC de 
Provence, UER de Physique, Provence, France 

Received 30 October 1984 

Abstract. Using elementary methods such as Dirichlet decoupling, the computation of 
essential spectra of hard-core type Schrodinger operators HE2 in L2(n2)  (n2 = R"\d, ,  a, 
the compact hard core, n EN) is reduced to that of ordinary Schrodinger Hamiltonians in 
L2(R")  whose potentials coincide with that of H g 2  sufficiently far out. 

In this letter we assume 

R2:= R"\fi l . There is a J E C"(R") with 
(i) R, c R" is open and bounded, the boundary aR, is of Lebesgue-measure zero. 

O S J S ~ ,  ~ r . i i , = o ,  J ( x ) = ~  for I x l s R ,  

fi, c B R  =(xER" 11x1 < R } .  (1) 

If -AEJ on D(-AEJ) = H$'(Rj) denotes the Dirichlet Laplacian in L2(flj), j = 1,2, we 
also use the assumption 

(ii) V E  L:oc(R,) real-valued, Vr R I  = 0, V-(x) := max(0, - V(x)} is form-bounded 
with respect to -A:, with bound a < 1: 

g E H$'(R2). (2) II Vfi2gIlk2 s a ll(-Aaz) gll kz + b llgll kP 

HE,= -A&+- v (3)  

D 1/2 

Then the form sum HE, of -A:, and V in L2(f12), i.e. 

represents the so-called hard-core Hamiltonian. Under the natural isomorphism 
L2(R" )  = L 2 ( R l ) 0  L2(f12) we have a decoupling of the Dirichlet Laplacian on a, U R2: 

A & u ~ z  = AE,@A&. (4) 

Q-"I H $ ' ( R ~  U a,) = ~ - * 4 - n ~ ,  Q-"r H$'(R~) = Q-":,, j = i , 2  ( 5 )  

@E H~T1(f12) and ll(-AEz)i'2(J"f) 11 k2 s ~ ~ ( - A ) " z f ~ ~  i z +  IlJ"Ajll L - l l f l l  22, ( 6 )  

Its form domain H$'(Rl U f12) = Hi.'(R,)@ H$'(R2) obviously is contained in the 
form domain H2*'(R") of the Laplacian A in R" and 

where Q-", .  . . , detote the forms associated with - A , .  . . . For all f~ H2,'([Wn) and 
all J"E c"(R"), O S J ~  1, supp j c ~ , ,  we get 

t On leave of absence from Institut fur Theoretische Physik, Universitat Graz, Austria. 
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This implies in particular that the form sum H, of -A and J2V in L2 = L2(R") is a 
well defined self-adjoint operator. 

H , = - A ~ J ~ v .  (7) 

H D = - A E , , n 2 i  V-(-A,D,)OH,D,. (8) 

a e s s ( H D )  = a e s s ( ~ n D , ) -  (9) 

Finally, for technical reasons, we introduce the form sum HD in L2: 

As .RI is bounded it follows for the essential spectra that 

The main result then reads 

Theorem I .  Assumptions (i)  and (ii) imply 

Remarks 
(a) Theorem 1 states in particular that the essential spectrum of H, is independent 

of the choice of J satisfying (1) .  This is exactly what one expects on physical grounds: 
only the asymptotic behaviour of V (i.e. 3' V) determines the location of the essential 
spectrum; in particular the hard core can be thought of as a local singularity which is 
irrelevant for uess(HE2) .  This result represents a sort of 'decoupling from local sin- 
gularities' as reviewed e.g. in Reed and Simon (1979) and Perry (1983) in the context 
of scattering theory in the presence of strongly singular potentials and in Hunziker 
(1967), Amrein and Georgescu (1973), Ferrero et a1 (1974), Rauch and Taylor (1975), 
Davies and Simon (1978), Kato (1978), Jensen and Kato (1978), Combes and Weder 
(1981), and Demuth (1982) in connection with scattering theory for hard core systems. 

(b) Several (in fact infinitely many) hard cores are obviously included in our 
formulation by taking .RI to be the union of disjoint open sets. 

(c) We emphasise that the proof of theorem 1 as given below is completely 
elementary and only relies on well known compactness results. 

Proof 
(a) By Weyl's theorem (Reed and Simon 1978), (10) follows from (9) by showing 

that the compactness of 

( H D -  Z ) - l -  (sr, - z)-I 

= ( H D -  z ) (  1 - J ) + [ ( H D -  z)-'J-J(H, - z)-l]+ ( 1  - J ) ( H ,  - z)-I  ( 1  1 )  

(12) 

(13) 

for some z E p ( H D )  n p(H,). But we have 

( 1  - J ) ( H D -  F)-I = [( 1 -J)(lV/+ l)-q[(\Vl+ l ) ( H D -  3-'3, 
( 1  - J ) ( H ,  -Z)-l= [ ( l  - J ) ( l V l +  l)-l][(pl+ l)(H, - z ) - ' ] .  

Since 1 - J E  C?(R"), ( 1  -J)(lVl+ I ) - '  is compact (Simon 1979). From Simon (1978) 
and Reed and Simon (1978) we know 

-A (-A:,)@ ( -Ag2)  = -A:,,R2. (14) 
Therefore (IV/ + 1)( HD - Z)-' is bounded. Thus the first and the third summand of the 
RHS of ( 1  1 ) are compact operators. 
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(b) In order to prove the compactness of the second summand of the RHS of ( 1  1) 
we first note the following elementary fact on the difference of resolvents without proof. 

Lemma 1 .  Let J be a bounded and A,, j = 1,2, be self-adjoint operators in a complex 
separable Hilbert space %’ and z E p(A, )  n p(A2). Then 

( A ~ - z ) - ’ J - J ( A ~  - z ) - ’ = - ( A ~ - z ) - ’ B ( A ~  -z)-’ (15) 

for some linear operator B :  9 ( A l ) +  %‘ iff 

g E 9 ( A l )  implies Jg E 9 ( A 2 )  and 

A 2 J g - J A I g = B g  for all g E  9 ( A , ) .  (16) 

And in order to determine the operator B in the present case we prove: 

Lemma 2. Assume conditions (i) and (ii). Then f~ 9(H,) implies 

(a) J ~ E  ~ ( H J )  n 9 ( ~ ” )  and 

(b) HD(Jf) = Hj(Jf) = J (  Hjf) - 2(VJ) * V f - (AJ)f: 

Combining (15)-( 17) we get 

( H D -  z)-’J-J(H,  - z)-l 

= ( HD - Z)-’[2(VJ) * v -k ( U ) ] (  HJ - Z)-’ 

= 2[()v/ f l ) ( H D -  f)-’]*[(lvI + 1)-’(vJ)]* [v(HJ - z)-‘] 

+ ( H” - z)-’(AJ)(H~ - z ) - ’  (18) 

which proves compactness of this operator in the same way as in (12) resp. (13). Thus 
the difference of the resolvents is compact and Weyl’s theorem proves (10). 

Proof of Lemma 2. Clearly, J ~ E  H$2(Cll ua,) and hence J ~ E  9 ( H J )  n 9(IHD11/2). 
Denote by V and by VD the distributional gradient on 9 (V)=H2*’ (R“)  and on 
9 ( V D )  = H2*’(al  U a,) respectively, and by Q” and QJ the forms associated with H” 
and HJ. Let g E  Cr(R”) then 

= [V(Jg), Vfl-2[(VJ)g, vfl-[(AJ)g,fl+[lV1”2g, (sign V)1VI’I2Jfl 

= (g, JH,f) -2[(VJ)g, Vfl-[(AJ)g,fl (19) 

proves the right equality in equation (12) since C?(R“) is a form core for HJ Next 
let h E Cr(0,  U 0,) and compute (note VD(Jf) = V(Jf)): 

QD(h, ~ f )  = ( v ” ~ , v ” ( J ~ ) ) + ( ~ v I ” ~ ~ ,  (sign v ) I v I ’ / ~ ( J ~ ) )  
= ( V ( J h ) ,  Vf) - ( h ,  (AJ)f) - 2( h, (VJ) Vf) + ( 1  VI”’Jh, (sign V)l Vl’12f) 

= (h ,  HJ(Jf)). (20) 

Since C r ( 0 ,  ua2) is a form core for H” (Cycon 1981) we get (17). 
Thus the computation of cress( HE,) is reduced to that of res,( H,). However criteria 

to determine the essential spectrum of Hamiltonians of the type Hj are well known 
(Reed and Simon 1978, Benci and Fortunato 1981, Leinfelder 1983). 
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We finally discuss generalisations of Weyl's theorem and their applications to 
singular (possibly hard-core type) potentials. 

Lemma 3. Let Aj, j = 1,2 be self-adjoint operators in some (complex, separable) Hilbert 
space X and z E p(A,)  n p(A,). Suppose J E a( X) and assume 

(i) (A2- z)- ' J  - J ( A l  - z)-' E am(X), 
(ii) ( 1  -J)(A,  - z)-' E Bm(X), 
(iii) ( ~ - J * J ) ( A , - z ) - ' E  Bm(X). 

Then (i) and (ii) as well as (i) and (iii) imply 

oess(A1) E c+ess(A2)* 

(Here a(  X) and Bm( X) denote the spaces of bounded and compact linear operators 
respectively in Z.) 

fioo& It suffices to prove aess[(Al - z)-']\{O} E oess[(A2 - z)-']\{O}. 
Let p # 0, p E o,,,[(A, -z)-'] then p = ( A  - z)-' for some A E aess(Al).  Thus we 

infer the existence of a singular sequence {gm}meNC X for A, and A such that 
g, + E+m 0, limm-rm IIg, 11 2 S > 0, EA,[(a, b)]g, = g,, m E N ( ( U ,  b) c R bounded, E A l  

the spectral projection of A,) and (Al-A)gm + L , 0  (Colgen 1981). Then f m =  

(A,  - z)gm, m E N, is a singular sequence of (A,  - z)-' and p. This simply follows from: 

In addition Jf,, m E N, is a singular sequence of (A, - z)-' and p :  obviously J', + E+m 0 
and [(A,-z)-'-p]Jf, =[(A2-z) - 'J-J(AI  -z)-']fm+J[(AI -z)-I-p]f, -.b-rmO. 

Finally, from 

Jfm = f m  - [ ( I  -J)(A, -z)-'I(AI -z12EAl[(a, b)Igm, 
we infer from (ii) 

lim l l ~ f ~  11 = lim l l f m l l  3 J A  - z j ~ .  
m-ac m-m 

Similarly, from 

IIJfmI12= IIfmI12+(fmr [ ( J * J -  1)(A,-z)- ' ] (A,-z) 'EAl[(~,  b))gm], 

we get from (iii) 

proving p E o,,,[(A2 - z)-'], 

The above result under conditions (i) and (iii) has been obtained by Ginibre (1980) 
using methods different from singular sequences (cf also Colgen (1981) for related 
results). We emphasise that a symmetric version of lemma 3 using conditions (i) and 
(ii) adding ( 1 - J*)(A, - z)-' E am( X) has been used in the proof of theorem 1 (identify- 
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ing %'= L2(R"), J, A, = H,, A2 = HD). But this symmetric variant is obviously equivalent 
to Weyl's theorem ( (A2- z)- '  - ( A ,  - z)- '  E a , (X)  * uess(A1) = uess(A2)).  Similarly, 
using conditions (i)  and (iii) adding ( 1  - JJ*)(A2 - z ) - '  E a,( X) in lemma 3 guarantees 
vess(Al) = vess(A2). However in the context of theorem 1 these conditions again imply 
the hypothesis of Weyl's theorem after replacing J by J 2  in the definition of H,. On 
the other hand the asymmetric versions of lemma 3 under certain circumstances are 
sufficient to yield invariance of the essential spectrum: if in addition to conditions (i)  
and ( i i )  or (i) and (iii) one has uess(Al) = [c, CO) and A2 3 c for some c E R then obviously 
vess(A,) = uesAA2). 

We are indebted to Professor R Hpregh-Krohn, M Sirugue-Collin, M Sirugue and L 
Streit for their kind hospitality extended to us at the ZiF, Universitat Bielefeld, during 
Project Nr2: Mathematics and Physics, and at CPT, CNRS Centre de Luminy, Marseille 
and UniversitC de Provence, UER de Physique respectively. Financial support by the 
above mentioned institutions is gratefully acknowledged. 
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